Senin, 30 Januari 2012

GARIS LURUS



Persamaan garis lurus:
( persamaan garis yang memiliki gradien m dan melalui titik (0,n) )
 α adalah sudut yang diapit oleh garis lurus tersebut dengan sudut x positif yang dihitung dari sumbu x positif ke arah berlawanan arah jarum jam.
m adalah koefisien arah garis lurus.

Persamaan umum garis lurus
 
A dan B keduanya tidak bersama-sama nol

Persamaan garis lurus yang diketahui sebuah titiknya
Misal titik A(x1,y1) maka persamaan garis yang melalui titik A:
                                                                                                                         
Persamaan garis lurus yang diketahui dua buah titiknya
Misal A(x1,y1) dan B(x2,y2) maka persamaan garis yang melalui titik A dan B:
                                                               

Persamaan Hesse atau persamaan normal suatu garis lurus
        

Dimana, cos2α+ sin2α=1 dan n>0
n = panjang normalnya yaitu garis yang melalui 0 dan tegak lurus garis tersebut.
α= sudut yang diapit garis normalnya dengan sumbu x.
Mengubah persamaan umum menjadi persamaan normal:
Contoh:
Akan diubah persamaan garis 2x+5y+10=0 menjadi persamaan normal.
Persamaan garis lurus yang diketahui titik potongnya dengan sumbu x dan y
Persamaan garis diatas yang memotong sumbu x di (a,0) dan memotong sumbu y di (0,b).

Jarak suatu titik dari suatu garis lurus
Misal titik A(x1,y1)
1.      Jarak titik A dari garis lurus yang persamaan garisnya
              
2.      Jarak titik A dari garis lurus yang persamaan garisnya Ax+By+C=0
       
3.      Jarak titik A dari garis lurus yang persamaan garisnya y=mx+n


                                                                                                                              

Hubungan dua buah garis lurus
Misal persamaan dua garis tersebut:
Kemungkinan letak dari 2 garis tersebut:
Jika persamaan-persamaan garis lurusnya:
Maka:

Sudut antara dua garis lurus
Misal adalah sudut antara garis lurus .
Misal persamaan dua garis tersebut:
maka
Jika persamaan-persamaan garis lurusnya:
maka

                                                                                         

Berkas garis
adalah garis yang melalui titik potong dua buah garis.
Misal persamaan dua garis tersebut:
Maka persamaan berkas garisnnya:

                                                                       
                                                         

Tidak ada komentar:

Poskan Komentar